A New Version of the Strang–Fix Conditions

RONG-QING JIA

Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1

AND

JUNJIANG LEI

Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078, U.S.A.

Communicated by Will Light

Received October 24, 1991; accepted in revised form April 27, 1992

A new version of the Strang-Fix conditions is formulated and it is used to give a new proof for the characterization of the local approximation order of the spaces generated by a finite number of compactly supported basis functions and their shifts. \bigcirc 1993 Academic Press, Inc.

Let Φ be a finite collection of compactly supported functions in $L_1(\mathbb{R}^s)$. We denote by span (Φ) the linear span of Φ , and by $S(\Phi)$ the linear space spanned by the functions in Φ and their shifts. Here by a shift we mean a multi-integer translate. Let $\{e_1, ..., e_s\}$ be the standard basis for \mathbb{R}^s . Then the shift operator T_j (j=1, ..., s) is defined by $T_j f := f(\cdot - e_j)$ for all functions f defined on \mathbb{R}^s , and the difference operator ∇_j is defined to be $1 - T_j$, where 1 stands for the identity operator. Given a positive integer k, we say that the collection Φ satisfies the Strang-Fix conditions of order k if there is an element ψ of $S(\Phi)$ such that

$$\hat{\psi}(0) = 1$$

and

$$D^{\lambda}\hat{\psi}(2\pi\alpha)=0$$

for all $\lambda \in \mathbb{N}^s$ with $|\lambda| < k$ and all $\alpha \in \mathbb{Z}^s \setminus \{0\}$, where $\hat{\psi}$ denotes the Fourier transform of ψ :

$$\hat{\psi}(\xi) := \int_{\mathbb{R}^3} \psi(x) \, e^{-ix \cdot \xi} \, dx, \qquad \xi \in \mathbb{R}^s.$$
221

0021-9045/93 \$5.00

Copyright (© 1993 by Academic Press, Inc. All rights of reproduction in any form reserved. We have used the standard multi-index notation in the above. In particular, we used \mathbb{N} to denote the set of nonnegative integers, and for $\lambda = (\lambda_1, ..., \lambda_s) \in \mathbb{N}^s$, the differential operator D^{λ} was defined to be $D_1^{\lambda_1} \cdots D_s^{\lambda_s}$, where D_j is the partial derivative operator with respect to the *j*th coordinate. Analogously, for $\alpha = (\alpha_1, ..., \alpha_s) \in \mathbb{Z}^s$ we denote by T^{α} the shift operator $T_{1}^{\alpha_1} \cdots T_s^{\alpha_s}$. The norm in \mathbb{R}^s is chosen to be the l_1 -norm:

$$|x| := |x_1| + \dots + |x_s|$$
 for $x = (x_1, \dots, x_s) \in \mathbb{R}^s$.

If $\lambda \in \mathbb{N}^s$, then $|\lambda|$ is just *the length* of λ . Moreover, we denote by $\overline{S}(\Phi)$ the linear space *generated* by the functions in Φ and their shifts. In other words, $g \in \overline{S}(\Phi)$ if and only if g has a representation of the form

$$g = \sum_{\alpha \in \mathbb{Z}^s} \sum_{\phi \in \Phi} c_{\phi}(\alpha) \phi(\cdot - \alpha),$$

where for each $\phi \in \Phi$, c_{ϕ} is a complex sequence on \mathbb{Z}^s . Note that $g \in S(\Phi)$ if and only if in the above representation every c_{ϕ} is supported on a finite subset of \mathbb{Z}^s . Thus $\overline{S}(\Phi)$ is *the completion* (see [7, p. 38]) of $S(\Phi)$ under the topology of compact convergence. Given h > 0 and a space F of functions on \mathbb{R}^s , we denote by F_h the *h*-scaling of F:

$$F_h := \{f(\cdot/h) \colon f \in F\}.$$

The importance of the Strang-Fix conditions rests on their applications to the approximation problems related to the family $\{\overline{S}_h(\Phi): h>0\}$ of approximating spaces. Now it is well known that if Φ satisfies the Strang-Fix conditions of order k, then $\{\overline{S}_h(\Phi): h>0\}$ provides approximation of order k. More precisely, we have the following theorem.

THEOREM 1. Let Φ be a finite collection of compactly supported functions in $L_p(\mathbb{R}^s)$ $(1 \le p \le \infty)$. If Φ satisfies the Strang–Fix conditions of order k, then there is a constant C independent of h such that

$$\operatorname{dist}_{p}(f, \overline{S}_{h}(\boldsymbol{\Phi})) \leq Ch^{k} |f|_{k, p} \quad \text{for all} \quad f \in W_{p}^{k}(\mathbb{R}^{s}),$$

where dist_p indicates that the distance is measured in the L_p -norm, and W_p^k denotes the usual Sobolev space, while

$$\|f\|_{k,p} := \sum_{|\lambda|=k} \|D^{\lambda}f\|_{L_p(\mathbb{R}^s)}.$$

Theorem 1 was first proved by Strang and Fix in [6] for the case p = 2. The general case $1 \le p \le \infty$ was discussed in [1] and [3]. A concrete scheme of L_p -approximation was given in [4]. The converse of Theorem 1 is not true in general. But de Boor and Jia succeeded in characterizing the local approximation order (see [1] for the definition) by proving the following theorem.

THEOREM 2. For any $p, 1 \le p \le \infty$, Φ provides local L_p -approximation of order k if and only if Φ satisfies the Strang-Fix conditions of order k.

After a close look into the paper [1] we have found that the essence of the proof given there lies in the following fact.

THEOREM 3. The following statements are equivalent.

(i) Φ satisfies the Strang-Fix conditions of order k.

(ii) There exists a sequence of elements $\psi_n \in S(\Phi)$ (n = 1, 2, ...) such that as $n \to \infty$ the sequence

$$\hat{\psi}_n(0) \to 1$$

and

$$D^{\lambda}\hat{\psi}_{n}(2\pi\alpha) \rightarrow 0$$

for all $\lambda \in \mathbb{N}^s$ with $|\lambda| < k$ and all $\alpha \in \mathbb{Z}^s \setminus \{0\}$.

Indeed, if Φ provides local approximation of order k, then as was proved in [1], for any h > 0 one can find $u_h \in S_h(\Phi)$ such that as $h \to 0$ the sequence $\hat{u}_h(0) \to 1$ and $D^{\lambda} \hat{u}_h(2\pi\alpha/h)/h^{k-1} \to 0$ for $|\lambda| < k$ and $\alpha \in \mathbb{Z}^s \setminus \{0\}$. Let $\psi_n := u_{1/n}(\cdot/n)/n^s$ (n = 1, 2, ...). Then the sequence $(\psi_n)_{n=1, 2, ...}$ satisfies condition (ii) of Theorem 3. Thus Theorem 2 follows from Theorem 3 and Theorem 1.

In this note we shall give a new proof for Theorem 3 and discuss its possible extensions. For this purpose, we introduce a topological linear space V as follows. Let E be the set of those pairs $(\lambda, \alpha) \in \mathbb{N}^s \times \mathbb{Z}^s$ for which either $|\lambda| < k$ and $\alpha \in \mathbb{Z}^s \setminus \{0\}$, or $\lambda = 0$ and $\alpha = 0$. Consider the set V of all mappings from E to C. It forms a linear space with respect to the usual pointwise addition and scalar multiplication. Furthermore, V is a Hausdorff topological linear space under the topology of pointwise convergence (see, e.g., [7, pp. 29-31]). Let L be the mapping from $S(\Phi)$ to V defined as follows. For any $\rho \in S(\Phi)$ we let $L\rho$ be the element in V given by

$$L\rho(\lambda, \alpha) = D^{\lambda}\hat{\rho}(2\pi\alpha), \qquad (\lambda, \alpha) \in E.$$

Then L is a linear mapping. Let b be the element of V given by

$$b(\lambda, \alpha) = \begin{cases} 1, & \text{if } (\lambda, \alpha) = (0, 0); \\ 0, & \text{otherwise.} \end{cases}$$

Then condition (i) of Theorem 3 says that $b \in L(S(\Phi))$, and condition (ii) of Theorem 3 is equivalent to having b in the closure of $L(S(\Phi))$. Thus Theorem 3 will be proved if we can show that $L(S(\Phi))$ is closed. For this it suffices to show that $L(S(\Phi))$ is finite dimensional, because any finite dimensional subspace of a Hausdorff topological linear space is closed (see, e.g., [7, Coro. 9.2]).

In order to prove that $L(S(\Phi))$ is finite dimensional, we first investigate the kernel space N of L:

$$N := \{ \rho \in S(\boldsymbol{\Phi}) \colon L\rho = 0 \}.$$

We observe that for any $\rho \in S(\Phi)$, $\nabla_i^k \rho \in N$ for j = 1, ..., s. Indeed,

 $(\nabla_i^k \rho)^{\wedge} = g_i^k \hat{\rho},$

where $g_j(\xi) := 1 - e^{i\xi_j}$ for $\xi = (\xi_1, ..., \xi_s) \in \mathbb{R}^s$. Clearly, $D^{\lambda}g_j^k(2\pi\alpha) = 0$ for all $|\lambda| < k$ and $\alpha \in \mathbb{Z}^s$. Therefore, with the aid of the Leibniz formula for differentiation, we conclude that

$$D^{\lambda}((\nabla_{i}^{k}\rho)^{\wedge})(2\pi\alpha)=0$$

ţ

for all $|\lambda| < k$ and $\alpha \in \mathbb{Z}^s$. This shows that $\nabla_j^k \rho \in N$. Let

$$Q := \sum_{|\alpha| \leq ks} T^{\alpha}(\operatorname{span}(\Phi)).$$

We claim that for any $\alpha \in \mathbb{Z}^s$ and $\rho \in \operatorname{span}(\Phi)$, $T^* \rho \in Q + N$. In other words, $S(\Phi) = Q + N$. This claim can be verified by induction on $|\alpha|$. Let $\rho \in \operatorname{span}(\Phi)$. If $|\alpha| \leq ks$, then $T^* \rho \in Q$. Let $\alpha \in \mathbb{Z}^s$ be such that $|\alpha| > ks$ and suppose that $T^{\beta} \rho \in Q + N$ for all $\beta \in \mathbb{Z}^s$ with $|\beta| < |\alpha|$. Since $|\alpha| > ks$, some component of α , say α_j , has absolute value greater than k. Then either $\alpha_j < -k$ or $\alpha_j > k$. In the former case, we observe that $T^* \rho$ is a linear combination of $\nabla_j^k(T^* \rho)$ and $T'_j(T^* \rho)$, r = 1, ..., k. But $|\alpha + re_j| < |\alpha|$ for r = 1, ..., k in this case. Hence by the induction hypothesis, we have $T'_j(T^* \rho) \in Q + N$ for r = 1, ..., k. This shows that $T^* \rho \in Q + N$. The same argument is valid for the case $\alpha_j > k$. Thus we have proved that $S(\Phi) =$ Q + N, from which we conclude immediately that $L(S(\Phi)) = L(Q)$ is finite dimensional. This completes the proof of Theorem 3.

Theorem 3 can be extended in various ways. First, the functions in Φ are not necessarily compactly supported. We only need to assume that any function ρ in Φ is in $L_1(\mathbb{R}^s)$, and the Fourier transform $\hat{\rho}$ is in C^{k-1} in some neighborhood of $2\pi\alpha$ for every $\alpha \in \mathbb{Z}^s$. Second, *E* could be any nonempty subset of $\{\lambda \in \mathbb{N}^s : |\lambda| < k\} \times \mathbb{Z}^s$. Again, we denote by *V* the topological linear space consisting of all mappings from *E* to \mathbb{C} , and let *L*

225

be the linear mapping from $S(\Phi)$ to V given by $L\rho(\lambda, \alpha) = D^{\lambda}\hat{\rho}(2\pi\alpha)$ for $\rho \in S(\Phi)$ and $(\lambda, \alpha) \in E$. Then we have the following result.

THEOREM 4. There is a finite dimensional subspace Q of $S(\Phi)$ such that $S(\Phi) = Q + N$, where N is the kernel space of L. Consequently, the image of $S(\Phi)$ under the mapping L is a finite dimensional subspace of V, and hence is closed.

Theorem 4 can be applied to approximation by shifts of functions having global support (see [4] and [5]) and to the Strang-Fix conditions associated to a lower set in \mathbb{N}^s as studied in [2].

REFERENCES

- 1. C. DE BOOR AND R. Q. JIA, Controlled approximation and a characterization of the local approximation order, *Proc. Amer. Math. Soc.* 95 (1985), 547-553.
- H. G. BURCHARD, C. K. CHUI, AND J. D. WARD, "On Polynomial Degree and Approximation Order," CAT Report No. 175, Texas A&M University, College Station, TX, 1988.
- 3. W. DAHMEN AND C. A. MICCHELLI, On the approximation order from certain multivariate spline spaces, J. Austral. Math. Soc. Ser. B 26 (1984), 233-246.
- 4. R. Q. JIA AND J. J. LEI, Approximation by multiinteger translates of functions having global support, J. Approx. Theory 72 (1993), 2-23.
- 5. W. A. LIGHT AND E. W. CHENEY, Quasi-interpolation with translates of a function having noncompact support, Constr. Approx. 8 (1992), 35-48.
- G. STRANG AND G. FIX, A Fourier analysis of the finite-element method, in "Constructive Aspects of Functional Analysis" (G. Geymonat, Ed.), pp. 793-840, C.I.M.E., Rome, 1973.
- 7. F. TREVES, "Topological Vector Spaces, Distributions and Kernels," Academic Press, New York, 1967.