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A new version of the Strang-Fix conditions is formulated and it is used to give
a new proof for the characterization of the local approximation order of the spaces
generated by a finite number of compactly supported basis functions and their
shifts. " 1993 Academic Press, Inc.

Let @ be a finite collection of compactly supported functions in L (R’).
We denote by span (@) the linear span of @, and by S(®) the linear space
spanned by the funtions in @ and their shifts. Here by a shift we mean a
multi-integer translate. Let {e,, .., e,} be the standard basis for R*. Then
the shift operator T, (j=1,..,5) is defined by T,f:=f(-—¢,) for all
functions f defined on R’, and the difference operator V; is defined to be
I — T;, where 1 stands for the identity operator. Given a positive integer k,
we say that the collection @ satisfies the Strang—Fix conditions of order k
if there is an element Y of S(®) such that

¥(0)=1
and
DY (2na) =0

for all Ze N’ with {4| <k and all o Z*\{0}, where § denotes the Fourier
transform of ¢:

WO =] weidx  feR:
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We have used the standard multi-index notation in the above. In
particular, we used N to denote the set of nonnegative integers, and
for A=(4,, .., 4,)€N", the differential operator D* was defined to be
Di'--- D%, where D; is the partial derivative operator with respect to the
jth coordinate. Analogously, for a={(«,, .., a,)€ Z° we denote by T* the
shift operator T7'--- T*. The norm in R’ is chosen to be the /,-norm:

x| :=1lx,l+ -+ +|x,] for x=(x,..x,)eR"

If e N?, then |4| is just the length of i. Moreover, we denote by 5(®) the
linear space generated by the functions in @ and their shifts. In other
words, g € S(®) if and only if g has a representation of the form

g= 3 2 cola)d(-—a),
xeZ' ped
where for each ¢ € @, ¢, is a complex sequence on Z*. Note that ge S(®D)
if and only if in the above representation every ¢, is supported on a finite
subset of Z*. Thus S(®) is the completion (see [7, p. 38]) of S(®) under the
topology of compact convergence. Given 4> 0 and a space F of functions
on R*, we denote by F, the h-scaling of F:

Fp={f(/h): fe F}.

The importance of the Strang—Fix conditions rests on their applications
to the approximation problems related to the family {S,(®):h>0} of
approximating spaces. Now it is well known that if ¢ satisfies the
Strang-Fix conditions of order k, then {S,(®):h>0} provides
approximation of order k. More precisely, we have the following theorem.

THEOREM 1. Let @ be a finite collection of compactly supported functions
in L(R') (1<p< ) If ® satisfies the Strang-Fix conditions of order k,
then there is a constant C independent of h such that

dist,(f S(@NKCh* |f1y,  forall feWA(R),

where dist, indicates that the distance is measured in the L ,-norm, and W:‘,
denotes the usual Sobolev space, while

|flk,p = Z “D’f” Ly(Rey
Al =k
Theorem 1 was first proved by Strang and Fix in [6] for the case p=2.
The general case 1<p< oo was discussed in [1] and [3]. A concrete
scheme of L,-approximation was given in [4].
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The converse of Theorem 1 is not true in general. But de Boor and Jia
succeeded in characterizing the local approximation order (see [1] for the
definition) by proving the following theorem.

THEOREM 2. For any p, 1 < p < o, @ provides local L,-approximation of
order k if and only if & satisfies the Strang—Fix conditions of order k.

After a close look into the paper [1] we have found that the essence of
the proof given there lies in the following fact.

THEOREM 3. The following statements are equivalent.

(1) @ satisfies the Strang—Fix conditions of order k.

(i1) There exists a sequence of elements Y, e S(P) (n=1, 2, ..) such
that as n — oo the sequence

¥,(0) > 1

and
DY (2na) = 0

Jor all e N* with |1 <k and all xe Z*\{0}.

Indeed, if @ provides local approximation of order &, then as was proved
in [1], for any A>0 one can find u,e S,(P) such that as #—0 the
sequence i,(0)— 1 and D*a,(2na/h)/h* ' — 0 for |A| <k and ae Z*\{0}.
Let ¥, ;= u,(/n)/n* (n=1, 2,..). Then the sequence (¥,),_, , . satisfies
condition (ii) of Theorem 3. Thus Theorem 2 follows from Theorem 3 and
Theorem 1.

In this note we shall give a new proof for Theorem 3 and discuss its
possible extensions. For this purpose, we introduce a topological linear
space V as follows. Let E be the set of those pairs (4, a) € N° x Z° for which
either |4| <k and ae Z*\{0}, or A=0 and « =0. Consider the set ¥ of all
mappings from E to C. It forms a linear space with respect to the usual
pointwise addition and scalar muitiplication. Furthermore, ¥ is a
Hausdorff topological linear space under the topology of pointwise
convergence (see, e.g., [7, pp- 29-31]). Let L be the mapping from S(®)
to V defined as follows. For any pe S(®) we let Lp be the element in V'
given by

Lp(4, ) = D*p(2na), (L, a)eE.
Then L is a linear mapping. Let & be the element of V given by

1, if (4, 2)= (0, 0);
0, otherwise.

b(4, a)={
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Then condition (i) of Theorem 3 says that be L(S(®)), and condition (i1}
of Theorem 3 is equivalent to having b in the closure of L(S(®)). Thus
Theorem 3 will be proved if we can show that L(S(®)) is closed. For this
it suffices to show that L(S(®)) is finite dimensional, because any finite
dimensional subspace of a Hausdorff topological linear space is closed (see,
e.g., [7, Coro.9.21).

In order to prove that L(S(®)) is finite dimensional, we first investigate
the kernel space N of L:

N:={peS(®P): Lp=0}.
We observe that for any p e S(@), V}fpeN for j=1, .., s. Indeed,
(Vip)* =gfp,

where g,(£) :=1—¢" for £ = (¢, .., £,) e R°. Clearly, D’g}(2na)=0 for all
|A| <k and aeZ*’ Therefore, with the aid of the Leibniz formula for
differentiation, we conclude that

D*((V4p)* )(2mx) =0

for all |A] <k and xe€ Z'. This shows that V;‘pe N.
Let

Q:= Y T*span(®)).

Ja] < ks

We claim that for any € Z* and p e span(®), T*pe Q + N. In other words,
S(@)=Q+ N. This claim can be verified by induction on |a|. Let
pespan(®). If |« <ks, then T*pe Q. Let a e Z° be such that |af > ks and
suppose that T%pe Q + N for all Be Z* with |B| < |«|. Since |«| > ks, some
component of «, say «;, has absolute value greater than k. Then either
a;<—k or a,>k. In the former case, we observe that T*p is a linear
combination of Vi(T*p) and T[(T%p), r=1, ... k. But |a+re]|<|af for
r=1,..,k in this case. Hence by the induction hypothesis, we have
T(T*p)eQ+N for r=1, .., k. This shows that T°pe Q + N. The same
argument is valid for the case «;> k. Thus we have proved that S(®)=
Q + N, from which we conclude immediately that L(S(@)})= L(Q) is finite
dimensional. This completes the proof of Theorem 3.

Theorem 3 can be extended in various ways. First, the functions in @ are
not necessarily compactly supported. We only need to assume that any
function p in @ is in L,(R*), and the Fourier transform 4 is in C* !
in some neighborhood of 2na for every aeZ®. Second, £ could be any
nonempty subset of {1eN*:|A| <k} xZ° Again, we denote by V the
topological linear space consisting of all mappings from E to C, and let L



NEW STRANG-FIX CONDITIONS 225

be the linear mapping from S(®) to V given by Lp(4, o) = D*p(2na) for
pe S(@) and (4, a)e E. Then we have the following result.

THEOREM 4. There is a finite dimensional subspace Q of S(®) such that
S(®)Y=Q + N, where N is the kernel space of L. Consequently, the image of
S(®) under the mapping L is a finite dimensional subspace of V, and hence
is closed.

Theorem 4 can be applied to approximation by shifts of functions
having global support (see [4] and [5]) and to the Strang-Fix conditions
associated to a lower set in N* as studied in [2].
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