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A new version of the Strang-Fix conditions is formulated and it is used to give
a new proof for the characterization of the local approximation order of th~ spaces
generated by a finite number of compactly supported basis functions and their
shifts. ( 1993 Academic Pres,. Inc.

Let t:/> be a finite collection of compactly supported functions in LdIW).
We denote by span (t:/» the linear span of t:/>, and by S(t:/» the linear space
spanned by the funtions in t:/> and their shifts. Here by a shift we mean a
multi-integer translate. Let {el' ..., e,} be the standard basis for IW. Then
the shift operator Tj (j = I, ..., s) is defined by TJ:= f( . - e) for all
functions f defined on IRs, and the difference operator \J j is defined to be
I - Tj , where 1 stands for the identity operator. Given a positive integer k,
we say that the collection t:/> satisfies the Strang-Fix conditions of order k
if there is an element t/J of S( t:/» such that

tfr(O) = 1

and
D)'tfr(2nlX) = 0

for all ). E f\j' with IAI < k and all IX E ZS\ {O}, where tfr denotes the Fourier
transform of t/J:

tfr(O := f t/J(x) e.-IX ~ dx,
nl'

221

~ E IRs.
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We have used the standard multi-index notation in the above. In
particular, we used N to denote the set of nonnegative integers, and
for A= (A" ..., As) EN" the differential operator D A was defined to be
Dt1

••• D;', where Dj is the partial derivative operator with respect to the
jth coordinate. Analogously, for .~ = (~I' ..., as) E?L' we denote by T' the
shift operator T~l ... T~'. The norm in IRS is chosen to be the I,-norm:

Ixi := Ixd + ... + IXsl for X= (XL' ..., X,)E R'.

If AEN', then IAI is just the length of A. Moreover, we denote by S( <1» the
linear space generated by the functions in <1> and their shifts. In other
words, g E S( <1» if and only if g has a representation of the form

g = L L c~(a) q}(- - a),
,:xe zs tPe r/J

where for each q} E <1>, c~ is a complex sequence on ?L'. Note that g E S( <1»

if and only if in the above representation every c~ is supported on a finite
subset of ?L ' . Thus S( <1» is the completion (see [7, p. 38]) of S( <1» under the
topology of compact convergence. Given h > 0 and a space F of functions
on 1R', we denote by F" the h-scaling of F:

Fh := {f( ·/h):fE F}.

The importance of the Strang-Fix conditions rests on their applications
to the approximation problems related to the family {Sh( C/J): h > O} of
approximating spaces. Now it is well known that if C/J satisfies the
Strang-Fix conditions of order k, then {Sh( <1»: h > O} provides
approximation of order k. More precisely, we have the following theorem.

THEOREM 1. Let <1> be a finite collection of compactly supported functions
in Lp(IJ~n (1 ~p ~ (0). If <1> satisfies the Strang-Fix conditions of order k,
then there is a constant C independent of h such that

forall fEW~(IR'),

M,'here dist p indicates that the distance is measured in the Lp-norm, and W~

denotes the usual Sobolev space, while

Iflk.p:= L IID;fIILp(R')'
IAI ~k

Theorem 1 was first proved by Strang and Fix in [6] for the case p = 2.
The general case 1~ p ~ 00 was discussed in [1] and [3]. A concrete
scheme of Lp-approximation was given in [4].
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The converse of Theorem 1 is not true in general. But de Boor and Jia
succeeded in characterizing the local approximation order (see [1] for the
definition) by proving the following theorem.

THEOREM 2. For any p, 1~p ~ 00, e1J provides local Lp-approximation of
order k if and only if e1J satisfies the Strang-Fix conditions of order k.

After a close look into the paper [1] we have found that the essence of
the proof given there lies in the following fact.

THEOREM 3. The following statements are equivalent.

(i) e1J satisfies the Strang-Fix conditions of order k.

(ii) There exists a sequence of elements 1jJ/I E S(e1J) (n = 1,2, ... ) such
that as n -+ co the sequence

and

D"l/I /I(bra) -;.°
for all AEN' with IAI <k and all aEZS\{O}.

Indeed, if e1J provides local approximation of order k, then as was proved
in [1], for any h > ° one can find Uh E Sh( e1J) such that as h -;.° the
sequence uh(O)-;. 1 and D'uh(2na!h)jh k

-
1 -;.O for I}.I <k and aEZ'\{O}.

Let 1jJ/I :=ulill(-/n)!n' (n= 1,2, ... ). Then the sequence (1jJ/I)/I~I.2. satisfies
condition (ii) of Theorem 3. Thus Theorem 2 follows from Theorem 3 and
Theorem 1.

In this note we shall give a new proof for Theorem 3 and discuss its
possible extensions. For this purpose, we introduce a topological linear
space Vas follows. Let E be the set of those pairs (A, a) ENs x ZS for which
either 1).1 < k and a E Z'\ {O }, or A= 0 and IX = O. Consider the set V of all
mappings from E to C. It forms a linear space with respect to the usual
pointwise addition and scalar multiplication. Furthermore, V is a
Hausdorff topological linear space under the topology of pointwise
convergence (see, e.g., [7, pp. 29-31]). Let L be the mapping from S(e1J)
to V defined as follows. For any p E S( e1J) we let Lp be the element in V
given by

Lp(A, a) = D'p(2na), (A, IX) E E.

Then L is a linear mapping. Let b be the element of V given by

{
t,

bU, IX) =
0,

if (A,rx)=(O,O);

otherwise.
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Then condition (i) of Theorem 3 says that hE L(S(cf»), and condition (ii)
of Theorem 3 is equivalent to having h in the closure of L(S(cf>)). Thus
Theorem 3 will be proved if we can show that L(S(cf») is closed. For this
it suffices to show that L(S( cf») is finite dimensional, because any finite
dimensional subspace of a Hausdorff topological linear space is closed (see,
e.g., [7, Cora. 9.2]).

In order to prove that L(S(cf») is finite dimensional, we first investigate
the kernel space N of L:

N := {p E S( cf»: Lp = O}.

We observe that for any p E S(cf», V7 pEN for j = 1, ..., s. Indeed,

(V7 p ) A = gJ p,

where gj(O:= l-e'~} for ~=(~I' ..., ~s)ElRs. Clearly, DAg7(2rra) =0 for all
1).1 < k and a E ?L'. Therefore, with the aid of the Leibniz formula for
differentiation, we conclude that

D A
( (VJ p ) A )( 21ta) =0

for all IA.I < k and a E 7L'. This shows that V7 pEN.
Let

Q:= L P(span(cf»).
1'1 .; k5

We claim that for any a E?L' and p Espan( cf», T'p E Q + N. In other words,
S( cf» = Q + N. This claim can be verified by induction on lal. Let
p Espan( cf». If lal ~ ks, then Pp E Q. Let aE?L S be such that IIXI > ks and
suppose that TfJp E Q + N for all fJ E?L' with IfJl < lal. Since lal > ks, some
component of a, say aj , has absolute value greater than k. Then either
IY.j < -k or aj > k. In the former case, we observe that T'p is a linear
combination of VJ(Pp) and T;(Pp), r=l, ... ,k. But la+rejl<lal for
r = 1, ..., k in this case. Hence by the induction hypothesis, we have
T;(Pp)EQ+N for r=1, ...,k. This shows that T'PEQ+N. The same
argument is valid for the case aj > k. Thus we have proved that S( cf» =
Q + N, from which we conclude immediately that L(S(cf>)) = L(Q) is finite
dimensional. This completes the proof of Theorem 3.

Theorem 3 can be extended in various ways. First, the functions in cf> are
not necessarily compactly supported. We only need to assume that any
function p in cf> is in L(IRS), and the Fourier transform p is in C k

- I

in some neighborhood of 2rra for every a E ?L'. Second, E could be any
nonempty subset of PE~s:IA.I<k}x?Ls. Again, we denote by V the
topological linear space consisting of all mappings from E to C, and let L
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be the linear mapping from S( t1» to V given by LpU, 0::) = D)p(2no::) for
p E S(t1» and (A, 0::) E E. Then we have the following result.

THEOREM 4. There is a finite dimensional subspace Q of S( t1» such that
S( t1» = Q+ N, where N is the kernel space of L. Consequently, the image of
S( t1» under the mapping L is a finite dimensional subspace of V, and hence
is closed.

Theorem 4 can be applied to approximation by shifts of functions
having global support (see [4] and [5]) and to the Strang-Fix conditions
associated to a lower set in N S as studied in [2].
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